January 30, 2015

MBL Catalyst Magazine

View Past Issues of MBL Catalyst

MBL Catalyst, Volume 10, Number 1, Fall 2014
Download the full issue (pdf)


Supplemental Information

Pp. 2-3 “The Convening Power of MBL Imaging”

Lattice light-sheet microscopy (Eric Betzig lab):

Chen, Bi-Cheng et al. (2014) Lattice light-sheet microscopy: Imaging molecules to embryos at high spatiotemporal resolution. Science 346: DOI: 10.1126/science.1257998.

Gallery of videos obtained with lattice-light sheet microscope

Super-resolution microscopy (Betzig lab):

Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, Bonifacino JS, Davidson MW, Lippincott-Schwartz J, Hess H (2006). Imaging intracellular fluorescent proteins at nanometer resolution. Science 313: DOI: 10.1126/science.1127344

Nobel Prize in Chemistry Awarded to Microscopist and MBL Visiting Scientist and Faculty Member Eric Betzig

MBL Blog post (with videos) and HHMI Bulletin article about Betzig testing his new microscopes with MBL biologists.

Video of Eric Betzig giving an MBL Friday Evening Lecture in 2012, “Pushing the Envelope in Biological Fluorescence Imaging.”

HHMI news release and background on Eric Betzig.

iBiology video, “Eric Betzig and Harald Hess: Developing PALM Microscopy.


List of commercial vendors who provide microscopes and other equipment and support to MBL courses.

Pp. 4-5 “A Nervous System is Born”

In addition to Hari Shroff (National Institute of Biomedical Imaging and Bioengineering (NIBIB)), Daniel Colón-Ramos (Yale School of Medicine), Zhirong Bao (Memorial Sloan Kettering Cancer Center) and William Mohler (University of Connecticut), team members on this project include:

Ryan Christensen, NIBIB; Yicong Wu, NIBIB; Abhishek Kumar, NIBIB/Yale;
Javier Marquina-Solis, Yale; Mark Moyle, Yale; Natasha Guttierez, Yale;
Anthony Santella, Sloan-Kettering.

Kumar A, Wu Y, Christensen R, Chandris P, Gandler W, McCreedy E, Bokinsky A, Colón-Ramos DA, Bao Z, McAuliffe M, Rondeau G, Shroff H (2014) Dual-view plane illumination microscope for rapid and spatially isotropic imaging. Nature Protocols 9: doi:10.1038/nprot.2014.172

Wu Y, Christensen R, Colón-Ramos D, Shroff H (2013) Advanced optical imaging techniques for neurodevelopment. Curr Opin Neurobiol. 6: DOI:10.1016/j.conb.2013.06.008

Wu Y, Wawrzusin P, Senseney J, Fischer RS, Christensen C, Santella A, York AG, Winter PW, Waterman CM, Bao Z, Colón-Ramos DA, McAuliffe M and Shroff H  (2013) Spatially isotropic four-dimensional imaging with dual-view plane illumination microscopy. Nature Biotechnology 31: DOI:10.1038/nbt.2713

Wu Y, Ghitani A, Christensen R, Santella A. Bao Z Colón-Ramos DA, Shroff H (2011) Inverted selective plane illumination microscopy (iSPIM) enables coupled cell identity lineaging and neurodevelopmental imaging in Caenorhabditis elegans. PNAS 43: DOI: 10.1073/pnas.1108494108

iBiology video on diSPIM: Dual View Inverted Selective Plane Illumination Microscopy


iBiology video on “WormGUIDES: Networks and the nervous system” http://www.ibiology.org/ibiomagazine/issue-11/daniel-colon-ramos-networks-and-the-nervous-system.html

Huisken J, Swoger, J, Del Bene F, Wittbrodt J, Stelzer EHK (2004) Optical sectioning deep inside live embryos by selective plane illumination microscopy. Science 13: doi: 10.1126/science.1100035.

White JG, Southgate E, Thomson JN, Brenner S (1986) The structure of the nervous system of the nematode Caenorhabditis elegans. Phil. Trans. B. doi: 10.1098/rstb.1986.0056

Pp. 6-7: News & Notes

“Nobel Prize in Chemistry Awarded to MBL Visiting Scientist Eric Betzig”

(See supplemental material for pp. 2-3, above)

“Pyjama Squid Illuminates Photonic Material Design”

Bell GRR, Mathger LM, Gao M, Senft SL,  Kuzirian AM, Kattawar GW, Hanlon RT (2014) Diffuse white structural coloration from multilayer

reflectors in a squid. Advanced Materials, DOI: 10.1002/adma.201400383

“Novel Biosensor Reports on Microbial Growth Around Plant Roots”
Herron PM, Gage DJ, Pinedo CA, Haider ZK and Cardon ZG (2013) Better to light a candle than curse the darkness: illuminating spatial localization and temporal dynamics of rapid microbial growth in the rhizosphere. Front. Plant Sci., doi: 10.3389/fpls.2013.00323

“Building a Dividing Cell”

Nguyen PA, Groen AC, Loose M, Ishihara K, Wühr M, Field CM, Mitchison TJ (2014) Spatial organization of cytokinesis signaling reconstituted in a

cell-free system. Science 346: DOI: 10.1126/science.1256773

“Marine Microbial Activity Potential is Modeled Using Remote Sensing Data of Ocean’s Surface”

Larsen PE,  Scott N, Post AF, Field D, Knight R, Hamada Y, and Gilbert JA (2015)
Satellite remote sensing data can be used to model marine microbial metabolite turnover. The ISME Journal 9: doi:10.1038/ismej.2014.107

Pp. 8-9: “An Idea Sticks”

In addition to principal investigator Clare Waterman (NIH) and co-investigators Timothy Springer (Harvard Medical School), Satyajit Mayor (National Center for Biological Sciences, Bangalore), Tomomi Tani (MBL), and Rudolf Oldenbourg (MBL), the research team for this Lillie Award research project includes Vinay Swaminathan (NIH), Pontus Nordenfelt (Harvard), Joseph K. Mathew (Bangalore) and Shalin Mehta (MBL).

Selected MBL publications on polarized light microscopy:

DeMay BS, Noda N, Gladfelter AS, Oldenbourg R (2011) Rapid and quantitative imaging of excitation polarized fluorescence reveals ordered septin dynamics in live yeast. Biophys J. 101: doi: 10.1016/j.bpj.2011.07.008

Liu L, Oldenbourg R,  Trimarchi JR, and Keefe DL  (2000) A reliable, noninvasive technique for spindle imaging and enucleation of mammalian oocytes. Nature Biotech. 18: 223-225.

Oldenbourg R (1996) A new view on polarization microscopy. Nature 381: 811-2.

Inoué S (1953) Polarization optical studies of the meiotic spindle. I. The demonstration of spindle fibers in living cells. Chromosoma 5: 487-500.

Pp. 10-11 “Looks Great, But What Does It Mean?”

Danuser G (2011) Computer vision in cell biology. Cell 147: doi 10.1016/j.cell.2011.11.001

Pp. 12-13: “Catching the Cell in the Act”

Caption for illustration on p. 12: Tomographic reconstruction of vesicles fusing in the active zone of a mouse hippocampal synapse. Exocytosis of synaptic vesicles is induced by channelrhodopsin with a flash of light and captured by rapid high-pressure freezing. Synaptic vesicles are rendered transparent. Post-synaptic density is colored red to delineate the extent of the active zone.  Credit: Shigeki Watanabe, Charité Universitätsmedizin Berlin.

Watanabe S, Trimbuch T, Camacho-Pe´rez M, Rost BR, Brokowski B,

Sohl-Kielczynski B, Felies, Davis MW, Rosenmund C and Jorgensen EM (2014) Clathrin regenerates synaptic vesicles from endosomes. Nature 515: doi:10.1038/nature13846

Lucic V (2014) Towards unified vesicle endocytosis. Nature News and Views 515: doi:10.1038/nature13925.

Watanabe S, Rost BR, Camacho-Pe´rez M, Davis MW,  Sohl-Kielczynski B, Rosenmund C and Jorgensen EM (2014) Ultrafast endocytosis at mouse hippocampal synapses. Nature 504: doi:10.1038/nature12809

Cho S and Von Gersdorff H (2013) Faster than Kiss and Run. Nature News and Views 504: doi:10.1038/nature12842.

Watanabe S et al. (2013) Ultrafast endocytosis at Caenorhabditis elegans neuromuscular junctions. eLife 2:e00723: DOI: 10.7554/eLife.00723

Heuser JE, Reese TS, Dennis MJ, Jan Y, Jan L, Evans L (1979) Synaptic vesicle exocytosis captured by quick freezing and correlated with quantal transmitter release. J. Cell Biol. 81: 275-300.

Heuser JE and Reese TS (1973) Evidence for recycling of synaptic vesicle membrane during transmitter release at the frog neuromuscular junction. J. Cell Biol.  57:  315-344.

P. 15: “The Microscope Built by You”

MBL Physiology Course: Modern Cell Biology Using Microscopic, Biochemical and Computational Approaches

Microscopy Courses at MBL:

Analytical and Quantitative Light Microscopy

Optical Microscopy and Imaging in the Biomedical Sciences

Computational Image Analysis in Cellular and Developmental Biology

Immunohistochemistry and Microscopy

P. 16: “The Golden Age of Microscopy”

Selected Gladfelter/MBL collaborations:

Bridges AA, Zhang H, Mehta SB, Occhipinti P, Tani T, Gladfelter AS (2014) Septin assemblies form by diffusion-driven annealing on membranes. PNAS 111: doi: 10.1073/pnas.1314138111.

DeMay BS, Noda N, Gladfelter AS, Oldenbourg R (2011) Rapid and quantitative imaging of excitation polarized fluorescence reveals ordered septin dynamics in live yeast. Biophys J. 101: doi: 10.1016/j.bpj.2011.07.008

DeMay BS, Bai X, Howard L, Occhipinti P, Meseroll RA, Spiliotis ET, Oldenbourg R, Gladfelter AS (2011) Septin filaments exhibit a dynamic, paired organization that is conserved from yeast to mammals. J Cell Biol. 193: doi: 10.1083/jcb.201012143.

P. 17: “Finding a Focal Point”

MBL Central Microscopy Facility