That Squid Can Dance!

April 1st, 2013 @   -  No Comments

During experiments on the giant axons of the Longfin Inshore Squid (loligo pealei) at the Marine Biological Laboratory in Woods Hole, MA; we were fascinated by the fast color-changing nature of the squid’s skin. Squids (like many other cephalopods) can quickly control pigmented cells called chromatophores to reflect light. The Longfin Inshore has 3 different chromatophore colors: Brown, Red, and Yellow. Each chromatophore has tiny muscles along the circumference of the cell that can contract to reveal the pigment underneath.

We tested our cockroach leg stimulus protocol on the squid’s chromatophores. We used a suction electrode to attach to the squid’s fin nerve, then connected the electrode to an iPod nano as our stimulator. The results were both interesting and beautiful. The video below is a view through an 8x microscope zoomed in on the dorsal side of the fin.

We’d like to give a shout out to our gracious and brilliant hosts for making this possible: the Methods in Computational Neuroscience and the Neuroinformatics Courses at the MBL. Paloma T. Gonzalez-Bellido of Roger Hanlon’s Lab in the Program in Sensory Physiology and Behavior of the Marine Biological Laboratory helped us with the preparation. Paloma studies iridophores (iridescent cells) of the squid. You can read their latest paper at the The Royal Society.

Update: There are some questions as to what is happening and how this works. An iPod plays music by converting digital music to a small current that it sends to tiny magnets in the earbuds. The magnets are connected to cones that vibrate and produce sound.

Since this is the same electrical current that neurons use to communicate, we cut off the ear buds and instead placed the wire into the fin nerve. When the iPod sends bass frequencies (<100Hz) the axons in the nerves have enough charge to fire an action potential. This will in turn cause the muscles in the chromatophores to contract.

Leave a Reply