Stream quality among active and restoring river-based cranberry bogs

Project By: Holly Engel, Clarkson University
Project Mentor: Dr. Linda Deegan, MBL
Collaborator: Melanie Poole, Connecticut College

Semester in Environmental Science
12/17/2010
ABSTRACT

Some cranberry bogs on Cape Cod, MA rely on rivers to irrigate and flood them. The health of these rivers is potentially jeopardized by this practice, and the state of Massachusetts has purchased several of these sites for conservation and restoration. In this project, I assessed the quality and health of the streams in these bogs in comparison to the health of streams in active cranberry bogs and regions that have never been farmed for cranberries. My results for habitat complexity and in-stream invertebrate populations indicate that stream-quality increases with the amount of time the bog spends in natural restoration.

INTRODUCTION

Cranberry farming has been an important part of the Cape Cod economy for centuries (Cape Cod Cranberry Growers Association). Substantial plots of land in this region have been converted to bog platforms to support this industry. Traditionally, cranberry bogs are positioned around natural rivers and streams (“flow-through” bogs) to allow for easy irrigation and flooding of the bogs. There has been concern that flow-through bogs compromise the health of streams by impeding the migration routes of anadromous fish, such as herring, and contributing to in-stream pollution and nutrient loading through fertilizer and pesticide usage (Buzzard’s Bay National Estuary Program). Flow-through bogs further reduce stream quality by removing in-stream habitat for fish and invertebrate species. When the near-riparian land bordering the streams is cleared for the bog platform tree shading, root systems, and meanders are removed from the streams as well, diminishing their complexity and ability to support large food webs.

Flow-through bogs are grandfathered into Massachusetts state legislation, allowing older bogs that rely on natural waters to continue their operation, and this growing method now accounts for only 10-15% of cranberry agriculture on Cape Cod [2]. The State of Massachusetts has purchased several flow-through bogs and has been working to restore these stream and riparian habitats.

Restoration of disturbed lands can be approached through two different methods. The site can be actively restored, with man-made alterations being employed to encourage complexity and speed up development of the ecosystem, or the site can be naturally restored. In natural restoration the site is allowed to sit undisturbed and recover on its own, going through periods of succession until it reaches a stable state. For each of these restoration approaches there is the question of what the site will restore into. Will the system return to its original, undisturbed, pristine state, or will it reach an alternate, but still healthy, stable state? In this project I seek to address this question of succession and development within naturally restoring flow-through cranberry bogs.

Eight sites across the Cape Cod peninsula were investigated. Of these sites, two were flow-through cranberry bogs that were actively being used for agriculture, four were flow-through bogs in various stages of natural restoration, and two were natural rivers that had never been
altered or used for cranberry production. I studied habitat complexity, invertebrate populations, fecal coliform contamination, and the potential for nutrient loading in an attempt to determine the health of the streams. My expectation was that the active bogs and younger restoration sites would have less healthy stream systems than the older restoration sites and the sites that were never used for cranberry farming.

METHODS
The eight sites studied spanned four different river systems. Five locations were situated along the Coonamessett River (Figure 1, Figure 2), one location was a tributary to one of the Coonamessett sites and was fed by Flax Pond (Figure 2), and one location was located on the south side of the Cape along the Mashpee River (Figure 3). The final location, Red Brook, was located on the west side of the Bourne Bridge in the Lyman Reserve in East Wareham, MA (Figure 4). Reservoir Bog and Middle Bog, along the Coonamessett, are still actively farmed. Lower Bog and Flax II have been in natural restoration for approximately 6 years, Red Brook has been in restoration for 56 years, with moderate active restoration in recent years, and Zeke’s Way, on the Coonamessett, has been restoring for 80 years. An upstream section of the Coonamessett and a section of the Mashpee River that had never been farmed for cranberries were also investigated; the upstream Coonamessett section was more disturbed than the Mashpee location. (Table 1)

A minimum of two field days was spent at each site. Habitat diversity and complexity was measured in the field using a point transect method (Hauer and Lamberti, 2006). Ten transects were completed for each site, and each transect consisted of eleven evenly spaced points. To set up the transects, a token stream width was measured and multiplied by five to determine the length of stream to be studied. This length was then divided by ten to determine how far apart the transects should be spaced. An area of 100 cm² was examined around each point along the transect and the water depth, sediment type, dominant cover type, and all cover types present were recorded (Table 2). Each point was then classified as “cover” or “no cover” depending on its ability to support and shelter fish. If the area was 50% covered and had a minimum depth of 15 cm it was considered cover.

The invertebrate community at each site was sampled using a Surber sampler with a 500 µm net and a base area of 929 cm² (Hauer and Lamberti, 2006). Three samples were collected at each location. The samples gathered were representative of key dominant habitats within the site (Table 4). Samples were taken by resting the metal base of the Surber sample on the desired riverbed location with the opening to the net facing upstream. Any vegetation or debris within the Surber area was collected in large plastic bags, with extra care given to ensuring that all items did not exit the water during the collection until secured in the bag. The sediment within the Surber area was then disturbed to a depth of 2 cm. Once the water cleared, this disturbance was repeated. All material gathered in the Surber sampler was stored in large plastic bags and put on
ice until they could be processed or stored in the lab’s cold room (15°C). The samples were processed ½-1 cup at a time. Any macro invertebrates found were removed from the sediment and debris of the sample using tweezers or plastic transfer pipettes. Identification was done by eye and with the assistance of a magnifying glass and a top-lit dissecting scope. All invertebrates were identified to family or order whenever possible (Voshell, 2003; Thorp and Covich, 1991). Each invertebrate classification was counted and massed as a group to determine an average wet weight per individual. Wet weights were used to estimate productivity levels. (Productivity reference.) A water quality index (Figure 5) was used to rank the tolerance of collected invertebrate taxa and assign a water quality ranking to each site; sites could be ranked poor, fair, good and excellent. All samples were then frozen for storage.

Representative invertebrate and vegetation samples were selected for each site to be sent for stable isotope (13C and 15N) analysis. These samples were oven-dried for 48 hours and ground with mortar and pestle or Wig‘L’Bug apparatus. Wig‘L’Bug was manufactured by the Crescent Dental Mfg. Co. located in Lyons, IL, USA (Serial Number 6-0748). Stable isotope analysis was completed by the Stable Isotopes Laboratory at the Marine Biological Laboratory in Woods Hole, MA. Isotope results were used formulate a food web for each site and isotope values from previous SES projects were used to flesh out observations whenever possible.

Nutrient analysis was run on filtered water samples taken from each site. These samples were filtered with 25 mm, 0.45 µm GFF filters in a Swinex apparatus. Nitrate, ammonium and phosphate determinations were done for two samples from every location. Nitrate analysis was completed using the Lachat Flow Injection Analyzer in an adaptation of E. D. Wood et. al. Ammonium determination was adapted from J. D. H. Strickland and T. R. Parsons, and L. Solarzano. Phosphate determination was adapted from J. Murphy and J. P. Riley. Results were considered for signs of nutrient loading. Two additional water samples for each site were filtered at a pressure ≤12 mm Hg through 45 mm, 0.45 µm GFf filters and incubated in culture medium (Millipore m-FC with Rosolic Acid) for fecal coliform bacteria and any resulting colonies were counted at 12, 24 and 48 hour increments. These counts were compared with EPA standards for water quality (Table 4).

RESULTS
The percentage of cover suitable for fish habitat varied from site to site. Lower Bog and Flax II, both in their first decade of restoration, had the least available cover for fish with values of 5.46% and 2.73%, respectively. A significant increase occurred between these two 10-year sites and Red Brook and Zeke’s Way, both of which have been in restoration for seven decades. The greatest fish habitat percentage occurred in Middle Bog, at 50.9%, followed by the other active bog site, Reservoir, at 40.1%. (Figure 6)
The diversity of available cover types increased with age of restoration. Reservoir Bog and Middle bog had only two types of dominant cover available (Figure 7, 8). More cover types became available in the first decade restoration sites of Lower Bog and Flax II (Figure 9, 10), and further increases, from 3-4 to 5-6, occurred between these preliminary restoration sites and the 70 year old Red Brook and Zeke’s Way (Figure 11, 12). Cover variety was greatest in the unfarmed areas of Mashpee River and the forested, upstream Coonamessett River site. Each of these locations had seven 6 dominant cover types in addition to bare sediment regions (Figure 13, 14).

Invertebrate abundance followed two general trends: 1) Locations that were still being farmed or had been in restoration for shorter periods of time and had not achieve canopy closure over the stream had one dominant organism and trace abundances for all other invertebrates, and 2) locations that were natural and undisturbed from cranberry farming, or locations that had been restored long enough to achieve canopy closure, had less dramatic dominance and a more even distribution of abundance among the invertebrates present. The most common dominant organisms were Amphipods. The one anomaly to these trends was Flax II, which had a very distributed abundance and is a location that has only been in restoration for one decade. (Figure 15-22)

Productivity was highest in Middle Bog and Flax II (Figure 23). No distinct trend relating productivity values to restoration stage could be found. With the exception of Reservoir Bog and Flax II, invertebrate richness increased slightly with time spent in restoration (Figure 24). Water quality ranking based on the Key to Macroinvertebrate Life in the River also exhibited an increase with restoration on both a point scale (Figure 25) and a tally of the healthy, S taxa organisms present at each site (Figure 26). Flax II and Reservoir Bog remain the exceptions to these trends.

δ¹³C results for detritus samples from all sites indicate that the detrital pool is primarily driven by terrestrial inputs at all locations (Figure 27). Live plant samples, including several types of submerged aquatic vegetation and one algae sample, meet expectations for δ¹³C, but had higher than anticipated values for δ¹⁵N (Figure 27). These high δ¹⁵N values do not create traditional trends within each site when plotted against their respective δ¹³C values (Figure 28-36). No feeding down the food web is immediately present through comparison of the sites (Figure 28-36); this is illustrated by the small range of δ¹⁵N values seen among Amphipods for all locations they were sampled in (Figure 36).

Elevated nitrate conditions were found in Reservoir Bog, Middle Bog, Lower Bog and Zeke’s Way, all of which fall in succession along the Coonamessett River (Figure 37). These values peaked at 44 µM NO₃⁻. Lowest values were found in Flax II where the concentration was approximately 13 µM NO₃⁻. Due to complications during storage, Ammonium and Phosphate
determinations were spoiled, and the results of these determinations is thus unreliable. Fecal coliform colony counts fell between 0 and 2 for six of the studied locations (Table 5). After a 24 hour incubation, one Mashpee River sample had 3 colonies present, and Flax II supported 8 colonies on one sample and 11 on the site’s second.

DISCUSSION

Habitat complexity increased with restoration time. This increase is clear in the amount of suitable fish habitat available in the younger restored bogs, Lower Bog and Flax II, and the bogs that have been restoring for seven decades, Red Brook and Zeke’s Way (Figure 6). While the active bogs, Reservoir and Middle, have a large percentage of available cover for fish, this cover is less complex than what was found in well restored locations such as Zeke’s Way and natural locations such as Mashpee River (Figure 6, 7, 8, 12, 14). Zeke’s Way, Mashpee River and the upstream Coonamessett location all had mature trees alongside the rivers, adding complexity to the stream in the form of submerged roots, fallen branches, fallen trunks, overhanging branches, and allochthonous input such as leaf pack in the stream bed. This environment is much more complex than the beds of emergent marsh plants and submerged aquatic vegetation found in Reservoir Bog and Middle Bog and is more likely to support fish species as it not only provides in-stream protection, but protection and shading from predators outside of the stream as well.

While Mashpee River didn’t have the highest available fish cover, it displayed a healthy distribution of invertebrate abundance (Figure 22). The high amount of bare sediment in Mashpee (Figure 14) may help to support this. The gravel-based sediment in Mashpee River is conducive to algae growth and is the preferred habitat of stonefly larvae and mayfly larvae, two invertebrates that are known to prefer high water quality. Mashpee River scored highest in the macroinvertebrate key to water quality in both the numerical score and its abundance of high quality species (Figure 25, 26). This river is the least disturbed of the study locations and is considered to be the most pristine river environment on Cape Cod; it is likely that prior to being cleared for agriculture the active and restoring bog sites resembled Mashpee. When using this as location as the benchmark for restoration, none of the restored sites match it completely in terms of the water quality index, invertebrate distribution, and habitat complexity.

The distributions of invertebrate abundance for Reservoir Bog, Middle Bog, Lower Bog and Red Brook are all dominated by one type of organism (Figure 15, 16, 17, 19). For each of these cases, the dominant organisms are *Amphipods*, commonly known as scuds. Scuds are an invertebrate that’s linked to average water quality (Figure 5). This pattern of dominance by one organism was anticipated in areas that haven’t been in restoration long enough for the nearby terrestrial riparian zone to mature completely. These locations don’t have tree closure over them, leading to very low shading in the stream and a lack of the terrestrial based habitat diversity seen in locations such as Zeke’s Way, where tree roots create overhanging banks and fallen branches provide complex cover. Invertebrate abundances in the forested, upstream section of the
Coonamessett and Zeke’s Way more closely match that of the Mashpee River, leaning away from dominance by one organism and showing more even distribution among the most prevalent invertebrates (Figure 20, 21).

Flax II proved to be an interesting study site. The invertebrate abundance present at Flax II was more evenly distributed than Mashpee (Figure 18), and it had the highest productivity of any site (Figure 23). It also had high species richness, particularly when compared with Lower Bog, its fellow first decade restoration site (Figure 24), and Flax II scored excellently in the macroinvertebrate quality test (Figure 25, 26). However, Flax II had very low cover complexity and the least available habitat for fish (Figure 6, 10). The stream studied at Flax II is positioned between two ponds. At the head of the stream is Flax Pond, the reservoir that feeds into the stream, and at the base of the studied section was a developing pond in a sink hole that had formed in the middle of the bog. While the stream still flows, albeit slowly, through this developing pond and ends as a tributary of the Coonamessett River, it is heavily influenced by the pond systems present in Flax II. The rich, invertebrate community of Flax II could indicate a mixing of the stream and pond environments, and the slow moving water of the Flax II stream could be allowing species that normally prefer still-water to develop. Flax II was also the only system to show consistently high levels of fecal coliforms (Table 4). This could be the result of the pond environments surrounding Flax II, as the still-water in these locations would more readily allow fecal coliform bacteria to grow. Additionally, development around Flax Pond could have contributed septic leakage.

Taking into account the anomaly of Flax II, the invertebrate richness increases distinctly with restoration age (Figure 24). Water quality, as indicated by the macroinvertebrate key, also increases with restoration age (Figure 25, 26). Reservoir Bog functions as an exception, as its high invertebrate counts stem from an abundance of very tolerant organisms that are traditionally indicative of low water quality. The trend in increasing water quality is best seen in the S taxa counts (Figure 26). S taxa are invertebrates, such as caddisflies, that are associated with high water quality. These patterns imply that with longer periods of restoration, streams are capable of hosting a healthier invertebrate population, suggesting that the stream quality of restored bogs is better than that of active bogs.

The vegetation samples sent for stable isotope analysis returned high δ15N values (Figure 27). High δ15N values such as these normally indicate that an organism is located higher in the food web—something that is unlikely for plants, as they typically form the base of the food web. This trend is partially explained by the nitrate concentrations for the test sites. Nitrate is an excellent indicator of nutrient loading as it is capable of filtering through sediments with low attenuation. Nitrate concentrations were particularly high in the Coonamessett locations (Figure 37). It’s possible that the plants growing within these environments have their high δ15N values because of this nitrogen loading. The presence of organic farming along the Coonamessett,
within Reservoir Bog and Middle Bog, could also be adding to the δ^{15}N. Organic farming employs fertilizers like fish emulsion. Because fish emulsion traditionally has higher δ^{15}N values due to the carnivorous and omnivorous diets of most fish, when these fertilizers run off into the rivers and streams of the bogs the plants get a dose of heavy nitrogen compounds.

δ^{13}C values for detritus samples taken from each location indicate that the detrital pool is primarily driven by terrestrial inputs (Figure 27). The δ^{13}C values for all detrital samples fall very close to that of a maple leaf, indicating that they have terrestrial origins. The food webs for most of the study sites show that these systems are very detritus based (Figure 28-35). While the invertebrates present at these sites are pulled slightly towards the elevated vegetation values, they remain closest to the detrital pool. In Flax II, sampled invertebrates are pulled towards a carbon source that is not represented in the range of tested vegetation (Figure 32). It is likely that this food web is heavily influenced by an algae or vegetation sample that was not tested. This is also evident if the Lower Bog food web (Figure 31). This trend in young restoration sites may indicate that stream ecosystems that have only undergone restoration for short periods of time are not completely supported by detritus or large primary producers like water starwort, and have a developing foodweb that is distinctly different at its base than the active bogs or older restored sites in.

Amphipods, which were samples for isotope composition in all but one location, show no considerable differences in their δ^{15}N values (Figure 36). This could be an indication that these food webs are all fairly consistent in their placement of organisms, and that no dominant feature is feeding outside of its traditional range to account for stressed environmental conditions. However, sampling of higher trophic levels would need to be performed before this conclusion can be confirmed.

CONCLUSION

Based on the trends found in my habitat and invertebrate data, there appears to be a direct, positive connection between the quality of streams if flow-through cranberry bogs and the amount of time they spend in natural restoration. This result is encouraging for the State of Massachusetts’s current efforts in restoring discontinued bogs, and helps show that the efforts to conserve several of the bog-sites along the Coonamessett River, as well as Red Brook in the Lyman Reserve, are justified and promising. These lands are already used actively by the local community as recreational areas, particularly to walk their dogs, and continuing their restoration will only yield more beautiful, natural landscapes for the local Cape Cod population to enjoy.
ACKNOWLEDGEMENTS
Many, many thanks to Dr. Linda Deegan, my advisor, who has generously given me her time, expertise, and access to her library; I couldn’t have asked for a kinder, more knowledgable or more enjoyable mentor to work with.

I would also like to extend thanks to Richard McHorney, Stefanie Strebel, and Will Daniels for all of their help in the lab. Further thanks to Stefanie Strebel for her assistance in the field on several occasions; she made transect collection at multiple sites a pleasure. I have deep gratitude for the assistance Melanie Poole, my collaborator, who came with me on nearly all of my field days and made data collection for this project a fun experience. And I send hugs and love to Sarah Berry, who very bravely volunteered her weekend time to assist me in processing my Surber samples.

Thanks to the Clarkson University Honors Program, the Marine Biological Laboratory of Woods Hole, MA, the Ecosystems Center at the MBL, and the Semester in Environmental Science program for allowing me the opportunity to perform this research and the tools and funds to complete it.
LITERATURE CITED

TABLES

Table 1: Location and restoration status of all sites
Table 2: Cover types considered
Table 3: Surber sample locations within each site
Table 4: Environmental Protection Association water quality standards for fecal coliform contamination
Table 5: Fecal coliform colony counts for all locations
Table 1: Location and restoration status of all sites

<table>
<thead>
<tr>
<th>Site ID</th>
<th>Street Address</th>
<th>GPS Coordinates</th>
<th>Restoration Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reservoir Bog</td>
<td>John Parker Road, East Falmouth, MA</td>
<td></td>
<td>Active Agriculture</td>
</tr>
<tr>
<td>Middle Bog</td>
<td>John Parker Road, East Falmouth, MA</td>
<td></td>
<td>Active Agriculture</td>
</tr>
<tr>
<td>Lower Bog</td>
<td>John Parker Road, East Falmouth, MA</td>
<td></td>
<td>6 Years Restoration</td>
</tr>
<tr>
<td>Flax II</td>
<td>Parker Road, East Falmouth, MA</td>
<td></td>
<td>6 Years Restoration</td>
</tr>
<tr>
<td>Red Brook</td>
<td>Head of the Bay Road, East Wareham, MA</td>
<td></td>
<td>56 Years Restoration</td>
</tr>
<tr>
<td>Zeke’s Way</td>
<td>John Parker Road, East Falmouth, MA</td>
<td></td>
<td>80 Years Restoration</td>
</tr>
<tr>
<td>Upstream Coonamessett</td>
<td>Sandwich Road, East Falmouth, MA</td>
<td></td>
<td>Never Cranberryed</td>
</tr>
<tr>
<td>Mashpee River</td>
<td>Great Neck Road, Mashpee, MA</td>
<td></td>
<td>Never Cranberryed</td>
</tr>
</tbody>
</table>
Table 2: Cover types considered

<table>
<thead>
<tr>
<th>Vegetation Cover</th>
<th>Litter Cover</th>
<th>External Cover</th>
</tr>
</thead>
<tbody>
<tr>
<td>Submerged Aquatic Vegetation (SAV)</td>
<td>Leaf Pack (LP)</td>
<td>Overhanging Branches <1 m Above Surface (OB)</td>
</tr>
<tr>
<td>Emergent Marsh Plants (EMP)</td>
<td>River Litter (RL)</td>
<td>Overhanging Banks (Bank)</td>
</tr>
<tr>
<td>Benthic Algae</td>
<td>Roots</td>
<td>Leaning/Fallen Trees (Tree)</td>
</tr>
<tr>
<td></td>
<td>Submerged Branches (SB)</td>
<td></td>
</tr>
</tbody>
</table>
Table 3: Surber sample locations within each site

<table>
<thead>
<tr>
<th>Site</th>
<th>Pebbled Sediment</th>
<th>Sandy Sediment</th>
<th>Leaf Pack</th>
<th>Submerged Aquatic Vegetation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reservoir Bog</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Middle Bog</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lower Bog</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flax II</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Red Brook</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Zeke’s Way</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Upstream</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coonamessettt</td>
<td>2</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Mashpee River</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
Table 4: Environmental Protection Association water quality standards for fecal coliform contamination

<table>
<thead>
<tr>
<th>Fecal Coliform Colony Count after 24 Hour Incubation</th>
<th>Water Quality</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Suitable for drinking water</td>
</tr>
<tr>
<td>≤14</td>
<td>Suitable for shellfishing</td>
</tr>
<tr>
<td>≤200</td>
<td>Suitable for swimming</td>
</tr>
</tbody>
</table>
Table 5: Fecal coliform colony counts for all locations

<table>
<thead>
<tr>
<th>Check Point</th>
<th>t₀</th>
<th>t₁</th>
<th>t₂</th>
<th>t₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time (hrs)</td>
<td>0</td>
<td>15.7</td>
<td>23.9</td>
<td>48.2</td>
</tr>
<tr>
<td>Reservoir Bog</td>
<td>#1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>#2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Middle Bog</td>
<td>#1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>#2</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Lower Bog</td>
<td>#1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>#2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Flax II</td>
<td>#1</td>
<td>0</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>#2</td>
<td>0</td>
<td>0</td>
<td>11</td>
</tr>
<tr>
<td>Red Brook</td>
<td>#1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>#2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Zeke's Way</td>
<td>#1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>#2</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Upstream Coonamessett</td>
<td>#1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>#2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Mashpee River</td>
<td>#1</td>
<td>0</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>#2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
FIGURES

Figure 1: Map of Coonamessett River
Figure 2: Detailed map of Coonamessett River bogs
Figure 3: Map of Mashpee River
Figure 4: Map of Red Brook
Figure 5: Key to macroinvertebrate life in the river from University of Wisconsin
Figure 6: Percentage of cover suitable for fish habitat
Figure 7: Dominant cover in Reservoir Bog
Figure 8: Dominant cover in Middle Bog
Figure 9: Dominant cover in Lower Bog
Figure 10: Dominant cover in Flax II
Figure 11: Dominant cover in Red Brook
Figure 12: Dominant cover in Zeke’s Way
Figure 13: Dominant cover in the upstream Coonamessett site
Figure 14: Dominant cover in the Mashpee River
Figure 15: Reservoir Bog invertebrate abundance
Figure 16: Middle Bog invertebrate abundance
Figure 17: Lower Bog invertebrate abundance
Figure 18: Flax II invertebrate abundance
Figure 19: Red Brook invertebrate abundance
Figure 20: Zeke’s Way invertebrate abundance
Figure 21: Upstream Coonamessett invertebrate abundance
Figure 22: Mashpee River invertebrate abundance
Figure 23: Invertebrate productivity per site
Figure 24: Invertebrate community richness per site
Figure 25: Macroinvertebrate key water quality scores
Figure 26: Total S taxa per site
Figure 27: Vegetation stable isotope results for 13C and 15N
Figure 27: Reservoir Bog 13C and 15N stable isotopes
Figure 28: Middle Bog 13C and 15N stable isotopes
Figure 29: Lower Bog 13C and 15N stable isotopes
Figure 30: Flax II 13C and 15N stable isotopes
Figure 31: Red Brook 13C and 15N stable isotopes
Figure 32: Zeke’s Way 13C and 15N stable isotopes
Figure 33: Upstream Coonamessett 13C and 15N stable isotopes
Figure 34: Mashpee River 13C and 15N stable isotopes
Figure 35: 13C and 15N stable isotopes for Amphipods at all sites
Figure 37: Nitrate concentrations at all sites
Figure 1: Map of the Coonamessett River
Figure 2: Detailed map of the Coonamessett River bogs
Figure 3: Map of the Mashpee River
Figure 4: Map of Red Brook
Figure 5: Key to Macroinvertebrate Life in the River from University of Wisconsin

MACROINVERTEBRATE STUDY
See the instructions on page 4.

HOW MANY KINDS OF EACH GROUP DID YOU FIND?

<table>
<thead>
<tr>
<th>GROUP</th>
<th>MULTIPLY TIMES</th>
<th>EQUALS (SCORE EACH ROW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>G</td>
<td>F</td>
<td>2 x 1 =</td>
</tr>
<tr>
<td>R</td>
<td>F</td>
<td>2 x 2 =</td>
</tr>
<tr>
<td>U</td>
<td>S</td>
<td>2 x 3 =</td>
</tr>
</tbody>
</table>

TOTAL: (ADD ALL THREE SCORES)

WATER QUALITY RATING

- Excellent (score of >22 or at least 4 "S" taxa)
- Good (score of 17 - 22 or at least 3 "S" taxa)
- Fair (score of 11 - 16 or at least 2 "S" taxa)
- Poor (score of <11 and no "S" taxa)
Figure 6: Percent of cover suitable for fish habitat per site
Figure 7: Dominant cover in Reservoir Bog
Figure 8: Dominant cover in Middle Bog
Figure 9: Dominant cover in Lower Bog
Figure 10: Dominant cover in Flax II
Figure 11: Dominant cover in Red Brook
Figure 12: Dominant cover in Zeke’s Way
Figure 13: Dominant cover in the upstream Coonamessett site
Figure 14: Dominant cover in Mashpee River
Figure 15: Reservoir Bog invertebrate abundance
Figure 16: Middle Bog invertebrate abundance
Figure 17: Lower Bog invertebrate abundance
Figure 18: Flax II invertebrate abundance
Figure 19: Red Brook invertebrate abundance
Figure 20: Zeke’s Way invertebrate abundance
Figure 21: Upstream Coonamessett invertebrate abundance
Figure 22: Mashpee River invertebrate abundance
Figure 23: Invertebrate productivity per site

![Invertebrate Productivity per Site](image)

- **Productivity (g C/m\(^2\))**
- **Time Spent in Restoration**

- **Sites:**
 - Reservoir Bog
 - Middle Bog
 - Lower Bog
 - Flax II
 - Red Brook
 - Zeke's Way
 - Upstream Coonamessett
 - Mashpee River
Figure 24: Invertebrate community richness per site

![Bar chart](image_url)
Figure 25: Macroinvertebrate key water quality scores

![Bar chart showing water quality scores for different locations.](image-url)
Figure 26: Total S taxa per site
Figure 27: Vegetation stable isotope results for ^{13}C and ^{15}N
Figure 28: Reservoir Bog ^{13}C and ^{15}N stable isotopes
Figure 29: Middle Bog 13C and 15N stable isotopes
Figure 30: Lower Bog 13C and 15N stable isotopes
Figure 31: Flax II 13C and 15N stable isotopes
Figure 32: Red Brook 13C and 15N stable isotopes
Figure 33: Zeke’s Way 13C and 15N stable isotopes
Figure 34: Upstream Coonamessett ^{13}C and ^{15}N stable isotopes
Figure 35: Mashpee River ^{13}C and ^{15}N stable isotopes
Figure 36: 13C and 15N stable isotopes for Amphipods at all sites
Figure 37: Nitrate concentrations at all sites