Physical Biology of the Cell

The course will explore the description of a broad array of topics from modern biology using the language of physics and mathematics, and is aimed at those interested in learning more about how to construct theoretical models of biological systems as well as the use of computational tools to simulate and test the predictions of those models.

Course date: TBD
Application due date: TBD

Directors: Hernan Garcia, University of California, Berkeley; and Rob Phillips, California Institute of Technology

Not offered in 2022

External Website

Course Description

Biology is changing at a dizzying pace. The advent of new technologies such as super-resolution microscopies and DNA sequencing, to name but a few, are making it possible to query the inner workings of molecules, cells and multicellular organisms in ways that were previously unimaginable. One of the defining precepts of this three-week course on physical biology is that the kind of quantitative data that emerges from many of these new techniques demands quantitative models. The course will explore the description of a broad array of topics from modern biology using the language of physics and mathematics. This course is aimed at those interested in learning more about how to construct theoretical models of biological systems as well as the use of computational tools to simulate and test the predictions of those models, but who may not have used their quantitative skills as often as they might have liked. We will focus on physical and mathematical model building by drawing examples from broad swaths of modern biology including cell biology (signaling and regulation, cell motility), physiology (metabolism, swimming and flight), developmental biology (patterning of body plans, how size and number of organelles and tissues are controlled), neuroscience (action potentials and ion channel gating, vision) and evolution (population genetics, biogeography). The course will begin by examining the way in which simple order-of-magnitude estimates can be used to provide insights into problems ranging from the fidelity of protein translation to how far a bird can fly without stopping. We will then move on to develop simple theoretical models that make precise predictions about biological phenomena. These predictions will be tested through the hands-on analysis of experimental data and by performing numerical simulations using Matlab. The final part of the course will be dedicated to the development of “theory projects” by working side-by-side with course instructors on cutting-edge problems in modern biology. These projects will allow the students a hands-on introduction to the enabling power of biological numeracy in scientific discovery and make it possible for them to use these tools in their own research.