Biogeography of ammonia oxidizers in New England and Gulf of Mexico salt marshes and the potential importance of comammox

3 years 1 month ago
Biogeography of ammonia oxidizers in New England and Gulf of Mexico salt marshes and the potential importance of comammox Bernhard, Anne E.; Beltz, Jack; Giblin, Anne E.; Roberts, Brian J. Few studies have focused on broad scale biogeographic patterns of ammonia oxidizers in coastal systems, yet understanding the processes that govern them is paramount to understanding the mechanisms that drive biodiversity, and ultimately impact ecosystem processes. Here we present a meta-analysis of 16 years of data of ammonia oxidizer abundance, diversity, and activity in New England (NE) salt marshes and 5 years of data from marshes in the Gulf of Mexico (GoM). Potential nitrification rates were more than 80x higher in GoM compared to NE marshes. However, nitrifier abundances varied between regions, with ammonia-oxidizing archaea (AOA) and comammox bacteria significantly greater in GoM, while ammonia-oxidizing bacteria (AOB) were more than 20x higher in NE than GoM. Total bacterial 16S rRNA genes were also significantly greater in GoM marshes. Correlation analyses of rates and abundance suggest that AOA and comammox are more important in GoM marshes, whereas AOB are more important in NE marshes. Furthermore, ratios of nitrifiers to total bacteria in NE were as much as 80x higher than in the GoM, suggesting differences in the relative importance of nitrifiers between these systems. Communities of AOA and AOB were also significantly different between the two regions, based on amoA sequences and DNA fingerprints (terminal restriction fragment length polymorphism). Differences in rates and abundances may be due to differences in salinity, temperature, and N loading between the regions, and suggest significantly different N cycling dynamics in GoM and NE marshes that are likely driven by strong environmental differences between the regions. © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Bernhard, A. E., Beltz, J., Giblin, A. E., & Roberts, B. J. Biogeography of ammonia oxidizers in New England and Gulf of Mexico salt marshes and the potential importance of comammox. ISME Communications, 1, (2021): 9, https://doi.org/10.1038./s43705-021-00008-0

Contributions of photosynthetic organs to the seed yield of hybrid rice: The effects of gibberellin application examined by carbon isotope technology

5 years 5 months ago
Contributions of photosynthetic organs to the seed yield of hybrid rice: The effects of gibberellin application examined by carbon isotope technology Zheng, Huabin; Wang, Xiaomin; Li, Yunxia; Huang, Zhanwen; Tang, Qiyuan; Tang, Jianwu Changes in the structure and quality of a hybrid combination population have been observed after the application of gibberellins. Such changes would affect the accumulation and distribution of photosynthetic products, which would subsequently affect the yield during hybrid rice seed production. In this study, photosynthetic physiological characteristics and the distribution of photosynthetic products were evaluated in a field experiment. The transport of panicle photosynthetic products to grain was demonstrated using a 14C isotope tracer technique.The contribution ratios of the panicle and leaf to yield in the hybrid rice seed production were 32.3 and 42.1%, respectively. Through isotope tracing technology, it was determined that about 90% of the photosynthetic products of the panicle and 50% of those of the leaf were delivered to the panicle. During the filling period, the contribution of panicle to yield was concentrated in the early period (0–10 days after pollination), and the contribution of leaf to yield was more significant in the late period (10 days after pollination to maturity). These results suggest that the panicle makes an important photosynthetic contribution (equivalent to that of the flag leaf) during the process of grain filling, especially at 0–5 days after the heading stage. The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Contributions of photosynthetic organs to the seed yield of hybrid rice: The effects of gibberellin application examined by carbon isotope technology. Seed Science and Technology, 46(3), (2018): 533-546, doi:10.15258/sst.2018.46.3.10.

Discontinuities in soil strength contribute to destabilization of nutrient‐enriched creeks

5 years 8 months ago
Discontinuities in soil strength contribute to destabilization of nutrient‐enriched creeks Wigand, Cathleen; Watson, Elizabeth; Martin, Rose; Johnson, David S.; Warren, R. Scott; Hanson, Alana; Davey, Earl; Johnson, Roxanne; Deegan, Linda A. In a whole‐ecosystem, nutrient addition experiment in the Plum Island Sound Estuary (Massachusetts), we tested the effects of nitrogen enrichment on the carbon and nitrogen contents, respiration, and strength of marsh soils. We measured soil shear strength within and across vegetation zones. We found significantly higher soil percent organic matter, carbon, and nitrogen in the long‐term enriched marshes and higher soil respiration rates with longer duration of enrichment. The soil strength was similar in magnitude across depths and vegetation zones in the reference creeks, but showed signs of significant nutrient‐mediated alteration in enriched creeks where shear strength at rooting depths of the low marsh–high marsh interface zone was significantly lower than at the sub‐rooting depths or in the creek bank vegetation zone. To more closely examine the soil strength of the rooting (10–30 cm) and sub‐rooting (40–60 cm) depths in the interface and creek bank vegetation zones, we calculated a vertical shear strength differential between these depths. We found significantly lower differentials in shear strength (rooting depth < sub‐rooting depths) in the enriched creeks and in the interface zones. The discontinuities in the vertical and horizontal shear strength across the enriched marshes may contribute to observed fracturing and slumping occurring in the marsh systems. Tide gauge data also showed a pattern of rapid sea level rise for the period of the study, and changes in plant distribution patterns were indicative of increased flooding. Longer exposure times to nutrient‐enriched waters and increased hydraulic energy associated with sea level rise may exacerbate creek bank sloughing. Additional research is needed, however, to better understand the interactions of nutrient enrichment and sea level rise on soil shear strength and stability of tidal salt marshes. © The Author(s),2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Ecosphere 9 (2018): e02329, doi:10.1002/ecs2.2329.

Seasonal patterns of canopy photosynthesis captured by remotely sensed sun-induced fluorescence and vegetation indexes in mid-to-high latitude forests : a cross-platform comparison

5 years 11 months ago
Seasonal patterns of canopy photosynthesis captured by remotely sensed sun-induced fluorescence and vegetation indexes in mid-to-high latitude forests : a cross-platform comparison Lu, Xinchen; Cheng, Xiao; Li, Xianglan; Chen, Jiquan; Sun, Minmin; Ji, Ming; He, Hong; Wang, Siyu; Li, Sen; Tang, Jianwu Characterized by the noticeable seasonal patterns of photosynthesis, mid-to-high latitude forests are sensitive to climate change and crucial for understanding the global carbon cycle. To monitor the seasonal cycle of the canopy photosynthesis from space, several remote sensing based indexes, such as normalized difference vegetation index (NDVI), enhanced vegetation index (EVI) and leaf area index (LAI), have been implemented within the past decades. Recently, satellite-derived sun-induced fluorescence (SIF) has shown great potentials of providing retrievals that are more related to photosynthesis process. However, the potentials of different canopy measurements have not been thoroughly assessed in the context of recent advances of new satellites and proposals of improved indexes. Here, we present a cross-site intercomparison of one emerging remote sensing based index of phenological index (PI) and two SIF datasets against the conventional indexes of NDVI, EVI and LAI to capture the seasonal cycles of canopy photosynthesis. NDVI, EVI, LAI and PI were calculated from Moderate Resolution Imaging Spectroradiometer (MODIS) measurements, while SIF were evaluated from Global Ozone Monitoring Experiment-2 (GOME-2) and Orbiting Carbon Observatory-2 (OCO-2) observations. Results indicated that GOME-2 SIF was highly correlated with gross primary productivity (GPP) and absorbed photosynthetically active radiation (APAR) during the growing seasons. Key phenological metrics captured by SIF from GOME-2 and OCO-2 matched closely with photosynthesis phenology as inferred by GPP. However, the applications of OCO-2 SIF for phenological studies may be limited only for a small range of sites (at site-level) due to a limited spatial sampling. Among the MODIS estimations, PI and NDVI provided most reliable predictions of start of growing seasons, while no indexes accurately captured the end of growing seasons. © The Author(s), 2018. This is the author's version of the work and is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Science of The Total Environment 644 (2018): 439-451, doi:10.1016/j.scitotenv.2018.06.269.

Spartina alterniflora δ15N as an indicator of estuarine nitrogen load and sources in Cape Cod estuaries

6 years 1 month ago
Spartina alterniflora δ15N as an indicator of estuarine nitrogen load and sources in Cape Cod estuaries Kinney, Erin L.; Valiela, Ivan δ15N values of coastal biota have been used as indicators of land-derived N-loads and sources to estuarine systems and should respond predictably to differences in nitrogen and be sensitive to changes in nitrogen, preferably at the low end of eutrophication. We evaluated Spartina alterniflora as an indicator species of N-loads and sources of δ15N throughout the growing season, and compared the average δ15N to estuarine nitrogen loads and sources for several estuaries receiving different watershed N-loads. δ15N of S. alterniflora differed among estuaries, and these differences were maintained even as δ15N declined during the end of the growing season. δ15N values increased with increasing nitrogen loads to the subestuaries and with increasing percent wastewater-derived nitrogen load. The response of δ15N of S. alterniflora to increased N loads was greater at low N-loads, and decreased as N-loads increased, suggesting that S. alterniflora is a good indicator of incipient nitrogen load. © The Author(s), 2018. This is the author's version of the work and is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Marine Pollution Bulletin 131A (2018): 205-211, doi:10.1016/j.marpolbul.2018.04.006.
Checked
12 hours 47 minutes ago
More posts about Ecosystems Center Publications Subscribe to Ecosystems Center Publications feed