Synuclein regulates synaptic vesicle clustering and docking at a vertebrate synapse

2 years 5 months ago
Synuclein regulates synaptic vesicle clustering and docking at a vertebrate synapse Fouke, Kaitlyn E.; Wegman, M. Elizabeth; Weber, Sarah A.; Brady, Emily B.; Román-Vendrell, Cristina; Morgan, Jennifer R. Neurotransmission relies critically on the exocytotic release of neurotransmitters from small synaptic vesicles (SVs) at the active zone. Therefore, it is essential for neurons to maintain an adequate pool of SVs clustered at synapses in order to sustain efficient neurotransmission. It is well established that the phosphoprotein synapsin 1 regulates SV clustering at synapses. Here, we demonstrate that synuclein, another SV-associated protein and synapsin binding partner, also modulates SV clustering at a vertebrate synapse. When acutely introduced to unstimulated lamprey reticulospinal synapses, a pan-synuclein antibody raised against the N-terminal domain of α-synuclein induced a significant loss of SVs at the synapse. Both docked SVs and the distal reserve pool of SVs were depleted, resulting in a loss of total membrane at synapses. In contrast, antibodies against two other abundant SV-associated proteins, synaptic vesicle glycoprotein 2 (SV2) and vesicle-associated membrane protein (VAMP/synaptobrevin), had no effect on the size or distribution of SV clusters. Synuclein perturbation caused a dose-dependent reduction in the number of SVs at synapses. Interestingly, the large SV clusters appeared to disperse into smaller SV clusters, as well as individual SVs. Thus, synuclein regulates clustering of SVs at resting synapses, as well as docking of SVs at the active zone. These findings reveal new roles for synuclein at the synapse and provide critical insights into diseases associated with α-synuclein dysfunction, such as Parkinson’s disease. © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Fouke, K. E., Wegman, M. E., Weber, S. A., Brady, E. B., Roman-Vendrell, C., & Morgan, J. R. Synuclein regulates synaptic vesicle clustering and docking at a vertebrate synapse. Frontiers in Cell and Developmental Biology, 9, (2021): 774650, https://doi.org/10.3389/fcell.2021.774650.

Survival and axonal outgrowth of the Mauthner cell following spinal cord crush does not drive post-injury startle responses

2 years 5 months ago
Survival and axonal outgrowth of the Mauthner cell following spinal cord crush does not drive post-injury startle responses Zottoli, Steven J.; Faber, Donald S.; Hering, John; Dannhauer, Ann C.; Northen, Susan A pair of Mauthner cells (M-cells) can be found in the hindbrain of most teleost fish, as well as amphibians and lamprey. The axons of these reticulospinal neurons cross the midline and synapse on interneurons and motoneurons as they descend the length of the spinal cord. The M-cell initiates fast C-type startle responses (fast C-starts) in goldfish and zebrafish triggered by abrupt acoustic/vibratory stimuli. Starting about 70 days after whole spinal cord crush, less robust startle responses with longer latencies manifest in adult goldfish, Carassius auratus. The morphological and electrophysiological identifiability of the M-cell provides a unique opportunity to study cellular responses to spinal cord injury and the relation of axonal regrowth to a defined behavior. After spinal cord crush at the spinomedullary junction about one-third of the damaged M-axons of adult goldfish send at least one sprout past the wound site between 56 and 85 days postoperatively. These caudally projecting sprouts follow a more lateral trajectory relative to their position in the fasciculus longitudinalis medialis of control fish. Other sprouts, some from the same axon, follow aberrant pathways that include rostral projections, reversal of direction, midline crossings, neuromas, and projection out the first ventral root. Stimulating M-axons in goldfish that had post-injury startle behavior between 198 and 468 days postoperatively resulted in no or minimal EMG activity in trunk and tail musculature as compared to control fish. Although M-cells can survive for at least 468 day (∼1.3 years) after spinal cord crush, maintain regrowth, and elicit putative trunk EMG responses, the cell does not appear to play a substantive role in the emergence of acoustic/vibratory-triggered responses. We speculate that aberrant pathway choice of this neuron may limit its role in the recovery of behavior and discuss structural and functional properties of alternative candidate neurons that may render them more supportive of post-injury startle behavior. © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Zottoli, S. J., Faber, D. S., Hering, J., Dannhauer, A. C., & Northen, S. Survival and axonal outgrowth of the Mauthner cell following spinal cord crush does not drive post-injury startle responses. Frontiers in Cell and Developmental Biology, 9, (2021): 744191, https://doi.org/10.3389/fcell.2021.744191.

Machine-learning-based evaluation of intratumoral heterogeneity and tumor-stroma interface for clinical guidance

2 years 7 months ago
Machine-learning-based evaluation of intratumoral heterogeneity and tumor-stroma interface for clinical guidance Laurinavicius, Arvydas; Rasmusson, Allan; Plancoulaine, Benoit; Shribak, Michael; Levenson, Richard Assessment of intratumoral heterogeneity and tumor-host interaction within the tumor microenvironment is becoming increasingly important for innovative cancer therapy decisions because of the unique information it can generate about the state of the disease. However, its assessment and quantification are limited by ambiguous definitions of the tumor-host interface and by human cognitive capacity in current pathology practice. Advances in machine learning and artificial intelligence have opened the field of digital pathology to novel tissue image analytics and feature extraction for generation of high-capacity computational disease management models. A particular benefit is expected from machine-learning applications that can perform extraction and quantification of subvisual features of both intratumoral heterogeneity and tumor microenvironment aspects. These methods generate information about cancer cell subpopulation heterogeneity, potential tumor-host interactions, and tissue microarchitecture, derived from morphologically resolved content using both explicit and implicit features. Several studies have achieved promising diagnostic, prognostic, and predictive artificial intelligence models that often outperform current clinical and pathology criteria. However, further effort is needed for clinical adoption of such methods through development of standardizable high-capacity workflows and proper validation studies. © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Laurinavicius, A., Rasmusson, A., Plancoulaine, B., Shribak, M., & Levenson, R. Machine-learning-based evaluation of intratumoral heterogeneity and tumor-stroma interface for clinical guidance. American Journal of Pathology, 191(10), (2021): 1724–1731, https://doi.org/10.1016/j.ajpath.2021.04.008.

Adaptive proteome diversification by nonsynonymous A-to-I RNA editing in coleoid cephalopods

2 years 11 months ago
Adaptive proteome diversification by nonsynonymous A-to-I RNA editing in coleoid cephalopods Shoshan, Yoav; Liscovitch-Brauer, Noa; Rosenthal, Joshua J. C.; Eisenberg, Eli RNA editing by the ADAR enzymes converts selected adenosines into inosines, biological mimics for guanosines. By doing so, it alters protein-coding sequences, resulting in novel protein products that diversify the proteome beyond its genomic blueprint. Recoding is exceptionally abundant in the neural tissues of coleoid cephalopods (octopuses, squids, and cuttlefishes), with an over-representation of nonsynonymous edits suggesting positive selection. However, the extent to which proteome diversification by recoding provides an adaptive advantage is not known. It was recently suggested that the role of evolutionarily conserved edits is to compensate for harmful genomic substitutions, and that there is no added value in having an editable codon as compared with a restoration of the preferred genomic allele. Here, we show that this hypothesis fails to explain the evolutionary dynamics of recoding sites in coleoids. Instead, our results indicate that a large fraction of the shared, strongly recoded, sites in coleoids have been selected for proteome diversification, meaning that the fitness of an editable A is higher than an uneditable A or a genomically encoded G. © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Shoshan, Y., Liscovitch-Brauer, N., Rosenthal, J. J. C., & Eisenberg, E. Adaptive proteome diversification by nonsynonymous A-to-I RNA editing in coleoid cephalopods. Molecular Biology and Evolution, 38(9), (2021): 3775–3788, https://doi.org/10.1093/molbev/msab154.
Checked
9 hours 51 minutes ago
More posts about Bell Center Publications Subscribe to Bell Center Publications feed